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We investigate the out-of-equilibrium properties of a simple quantum impurity model, the interacting resonant
level model. We focus on the scaling regime, where the bandwidth of the fermions in the leads is larger
than all the other energies, so that the lattice and the continuum versions of the model become equivalent.
Using time-dependent density matrix renormalization group simulations initialized with states having different
densities in the two leads, we extend the results of Boulat, Saleur, and Schmitteckert [Phys. Rev. Lett. 101,
140601 (2008)] concerning the current-voltage (I -V ) curves, for several values of the interaction strength U .
We estimate numerically the Kondo scale TB and the exponent b(U ) associated to the tunneling of the fermions
from the leads to the dot. Next, we analyze the quantum entanglement properties of the steady states. We focus
in particular on the entropy rate α, describing the linear growth with time of the bipartite entanglement in the
system. We show that, as for the current, α/TB is described by some function of U and of the rescaled bias V/TB .
Finally, the spatial structure of the entropy profiles is discussed.
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I. INTRODUCTION

The dynamical properties of out-of-equilibrium quantum
many-body systems are a major topic in condensed-matter
physics [1,2]. Although the equilibrium properties of one-
dimensional (1D) interacting problems are well understood
in many cases, thanks, for instance, to some theoretical
techniques such as the Bethe ansatz, conformal field theory,
or matrix-product states (MPS) numerics [3], the physics that
takes place in out-of-equilibrium situations represents very
rich domain, and is much less understood.

Quantum impurity problems are among the simplest
quantum many-body systems, but they nevertheless harbor
many interesting phenomena, many open questions, and they
represent a very useful playground to develop new theoretical
ideas and methods. They are also, of course, relevant to
describe many experimental situations, from the Kondo effect
in metals [4] to transport in nanostructures such as quantum
dots or point contacts.

In this work, we consider a well-known impurity model:
the interacting resonant level model (IRLM) [5]. The model
describes two semi-infinite leads with spinless fermions that
are coupled to some resonant level (dot) via some tunneling
and some interaction [see Eq. (4) below]. We are interested
here in the transport properties of the system, and wish to
describe quantitatively the steady states that appear when some
particle current is flowing through the dot. How do we address
these questions, without relying on the linear response theory,
nor using some perturbative scheme that would assume that the
system is close to equilibrium and/or that the interactions are
weak? Thanks to the integrability of the IRLM [6], several
remarkable exact results have been obtained concerning
nonequilibrium steady states, such as the current-voltage (I -V )
characteristic for some special (so-called “self-dual”) value of
the interaction strength [7] (see also [8–10]). However, apart
from this special point and the noninteracting case, simple
quantities such as the I -V curve are not known analytically.
From this point of view, numerical simulations are invaluable
and complementary to the analytical approaches.

This study indeed aims at providing accurate numerical data
concerning the so-called scaling regime of the lattice model
(i.e., all the energies are small compared to the bandwidth in
the leads), where many quantities become universal and can be
quantitatively compared to the field-theory results (continuum
limit).

To simulate transport, a useful setup is to prepare a large
but finite isolated system in an initial state, at t = 0, where two
spatial regions, say the left and the right leads, have different
particle densities. Starting from such an inhomogeneous state,
the Hamiltonian evolution of the wave function will put the
particles in motion. This first leads to some transient regime
where some current starts flowing from one side to the other.
For times that are long compared to the microscopic time
scales, but smaller than the time required for an elementary
excitation to propagate through the whole system, we expect
on physical grounds that some quasisteady states should be
realized. This type of approach, where one follows numerically
the real time evolution starting from an initial state with finite
density bias, has already been used to investigate several
interacting 1D systems, like XXZ spin- 1

2 chains [11,12],
or impurity models [7,13,14]. These simulations have been
performed using the time-evolving block decimation and time-
dependent density matrix renormalization group (DMRG)
[15–17], where the many-body wave function of the system is
encoded as a matrix-product state.

Our objective is first to refine and extend some of the
previous numerical studies concerning the particle current
in the IRLM [7], and then to focus on the entanglement
entropy. Even though there have been several studies on the
entanglement properties of quantum impurity models, most
of these works focused on the ground state (for a review, see
[18]). Here, we will analyze in detail the linear growth of the
entanglement entropy with time, and its spatial structure in the
steady regime.

The plan of the paper is as follows. Section II presents
the model, the initial state, and describes qualitatively the
evolution of three quantities of interest: particle density,
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FIG. 1. Schematics of the interacting resonant level model. The
system is prepared at t = 0 in the ground state of the model with an
additional chemical potential equal to +V/2 in the left lead and equal
to −V/2 in the right lead. For t > 0, the system then evolves with
the bias switched to zero. In all cases, the chemical potential is zero
on the dot, hence the name “resonant”. Note that, by symmetry, the
average fermion occupation number 〈c†0c0〉 on the dot is equal to 1

2 .

particle current, and entanglement (von Neumann) entropy.
The central results are then presented in Sec. III. This section
is devoted to the steady state, and presents some quantitative
analysis of the numerics for the steady current and entropy rate,
focusing on the scaling regime of the model. In particular, we
confirm (Sec. III B), following Ref. [7], that in this limit the
current I is some universal function of V/TB and U , where V

is the initial bias, U the interaction strength, and TB is Kondo
crossover scale that we evaluate numerically. In Sec. III C, we
present a similar analysis for the scaling of the entropy rate, and
we show that it can also be analyzed in terms of some universal
functions of V/TB that we compute numerically for several
values of U . The shape of the out-of-equilibrium entanglement
profile is discussed in Sec. III D.

Finally, Appendix A provides some technical details con-
cerning the numerical simulations, and Appendix B presents
a few exact results in the free-fermion case (current, density,
and entropy rate).

II. MODEL AND TIME EVOLUTION

A. Hamiltonian

We consider a lattice version of the IRLM (Fig. 1), which
can be defined as

HIRLM = HA + HB + Hd, (1)

HA = −J

−2∑
r=−N/2

(c†r cr+1 + H.c.), (2)

HB = −J

N/2−1∑
r=1

(c†r cr+1 + H.c.), (3)

Hd = −J ′
0∑

r=−1

(c†r cr+1 + H.c.)

+U
∑
r=±1

(
c†r cr − 1

2

)(
c
†
0c0 − 1

2

)
, (4)

where HA/B describes the kinetic energy of free spinless
fermions in the left and right leads, and Hd models the
tunneling from the leads to the dot (site at r = 0), as well
as the density-density interaction between the dot and the ends
of the leads (r = −1 and 1).

As discussed later we will focus on the regime where the
hopping amplitude J ′ (or tunneling strength) between the leads
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FIG. 2. Magnetization profile Sz(r,t) at times t = 0,6,12,18,24.
Parameters of the model: J ′ = 0.3, V = 2.0, N = 254. Top panel:
U = 2.0, bottom: U = 0. In both cases, the initial magnetization m0

in the bulk of the left lead is indicated by a (red) horizontal line. The
orange horizontal line marks the exact bulk stationary magnetization
m for U = 0 [see Eq. (6)]. The data in the upper panel show some
deviations from this noninteracting value. Note that some Friedel-type
oscillations develop at long times in the vicinity of the dot, and these
are much stronger in the noninteracting case.

and the dot (r = 0) is much smaller than the bandwidth 4J of
the kinetic energy in the leads, i.e., J ′ � J . From now we take
J = 1 = h̄, thus defining the unit of time and energy.

B. Initial state

We choose the initial state |ψ(t = 0)〉 to be the ground
state of H0 = HIRLM + Hbias, where Hbias is an inhomogeneous
chemical potential (or voltage) that induces different densities
on the left and on the right leads:

Hbias = 1

2
V

N/2−1∑
r=−N/2

tanh(r/w)c†r cr . (5)

In the left (right) lead, the chemical potential is thus equal to
V/2 (−V/2) sufficiently far from the dot. This bias induces
different initial densities 〈c†r cr〉 = 1

2 ± m0 in the bulk of the
leads at t = 0 (blue horizontal line in Fig. 2). For an infinite
system, N → ∞, the Fermi momenta k+

F (k−
F ) in the left (right)

lead is set by 2J cos(k±
F ) = ±V/2, and these are related to the

density difference m0 through k±
F = π (±m0 + 1/2).

As done in previous studies [7], the voltage drop in Eq. (5)
is spatially smeared over ∼w sites in the vicinity of the dot.
This has the effect of producing an initial state with smoother
density in the vicinity of r = 0 and turns out to accelerate
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the convergence to a steady state. We typically use w = 10.
For the same reason, the initial state is prepared with J ′ = J ,
that is, uniform hopping amplitudes throughout the chain. In
addition, H0 is chosen to be noninteracting (U = 0), and the
interactions are switched on for t > 0.

C. Unitary evolution at t > 0

For t > 0 the wave function evolves using HIRLM, with
0 < J ′ < 1, and without the voltage bias term. The cal-
culations are performed using a time-dependent DMRG
algorithm, implemented using the C++ iTensor library [19].
The evolution operator U = exp(−iτH ) for a time step τ

is approximated by a matrix-product operator (MPO) [20],
using a fourth-order Trotter scheme [Eqs. (A1) and (A4)] and
τ = 0.2 (unless specified otherwise). The system sizes are of
the order of 200 sites and the largest times are of the order of
t 	 100. Additional details about the simulations are given in
Appendix A.

In the following, we focus on three quantities: the particle
density (Sec. II D), the particle current (Sec. II E), and the
entanglement entropy (Sec. II F).

D. Particle density

The particle density is defined by ρ(r,t) =
〈ψ(t)|c†r cr |ψ(t)〉, and we can equivalently use a spin
language, with the magnetization Sz(r,t) = ρ(r,t) − 1

2 . A
typical evolution of the density profile is shown in Fig. 2.
It shows how the initial profile at t = 0 gives rise to two
propagating fronts (one to the left and one to the right),
forming a “light cone,” and how some steady regions form in
the center. When the time is large enough, two regions with
quasihomogeneous densities develop on both sides of the dot.
The densities in the steady regions of the lead can be written
as ρ = 1

2 ± m, and the density difference m between both
sides of the dot can be computed exactly in the free-fermion
case U = 0. The result reads as

m =
∫ k+

F

k−
F

dk

2π
R(ε(k)), (6)

where R(ε) is the reflexion coefficient for an incident particle
with energy ε (more details in Appendix B 2). This exact value
m is in agreement with the magnetization that is measured
numerically in the stationary region for U = 0 (bottom panel
of Fig. 2), but slightly different from that observed in the
interacting case (top panel of Fig. 2), as expected.

E. Particle current

On a given bond, the expectation value of the current
operator is I (r,t) = 2Jr Im〈ψ(t)|c†rcr+1|ψ(t)〉, where Jr is
the hopping amplitude between the sites located at r and
r + 1. We thus have Jr = J ′ for r = −1 and r = 0 (hopping
to the dot), and Jr = J = 1 otherwise (in the leads). This
definition ensures the proper charge conservation equation
d
dt

〈ψ(t)|c†rcr |ψ(t)〉 = I (r − 1,t) − I (r,t). When no position
r is given, I (t) refers to the averaged current on both sites of
the dot: I (t) = 1

2 [I (−1,t) + I (0,t)].
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FIG. 3. Top panels: evolution of the entropy S(r,t) profile for
U = 0 and 2. Bottom panels: evolution of the current profile I (r,t)
for U = 0 and 2.0. Parameters of the model: J ′ = 0.3, V = 2.0,
N = 254, as in Fig. 2.

A typical evolution of the current profile is shown in the
upper panel of Fig. 3. As for the density, two propagating
fronts are visible. In the center of the system, one observes,
at sufficiently long times, the emergence of a spatial region
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FIG. 4. Top panel: current I (t). Bottom panel: entanglement
entropy S(t) between the left lead and the rest of the system. The
horizontal line in the top panel is the exact result at the self-dual
point (see text), derived in Ref. [7]. Parameters: U = 2.0, J ′ = 0.3,
V = 2.0, N = 254.

where the current is almost constant in space and time. This
is where some steady value of the current can be defined.
Interestingly, the current in the (left-moving and right-moving)
front regions reaches values that are significantly larger than
in the steady regions. The way the current in the center of
the system approaches its steady value, after some damped
oscillations, is shown in the upper panel of Fig. 4.

In many cases, the oscillations which appear in the transient
regime have a well-defined period Tosc. It was argued in
Ref. [14] that this period is simply given by the bias: Tosc =
4π/V . Our data are in agreement with this result, from U = 0
to large values of U .

F. Entanglement entropy

We denote by S(t,R + 1
2 ) the von Neumann entanglement

entropy of the set A of sites located to the left of site R, that
is, A = {−N/2, . . . ,R}. When no position is specified, S(t)
refers to the entanglement entropy S(t, − 1

2 ) of the entire left
(or right) lead.

The lower panel of Fig. 3 illustrates how the entanglement
profile evolves. The most striking feature is the rapid growth
of the entanglement entropy, which turns out to be linear in
time for a given r inside the “light cone” (see the lower panel
in Fig. 4). This linear growth of the entropy is well known in
the situations where some steady current is flowing through
an impurity (or defect). One can in particular mention the
analogous case of a weak bond connecting two free leads,
studied in detail in Ref. [21]. In such situations, a quantity of
interest is the entropy rate, defined as α = d

dt
S(t).

Since the computational cost of MPS-based methods grows
exponentially with the amount of bipartite entanglement
entropy in the system, this linear entropy growth severely
limits the longest times we can reach in the simulations. This
should be contrasted, for instance, with the slower logarithmic
growth of the entropy in the case where the two leads are
connected to the dot in the absence of any bias [22,23].
A logarithmic growth is in fact generic for local quenches

in critical one-dimensional systems [21,24,25]. The entropy
growth is also logarithmic in the case of an XXZ spin chain
(|�| < 1), with a translation-invariant Hamiltonian, which is
set in a current-carrying state using some domain-wall initial
condition (equivalent to some nonzero bias) [11,12].

The physical origin of the finite rate α is easy to
understand in a noninteracting and semiclassical picture.
Each incoming particle at energy ε has a finite probability
T (ε) to be transmitted to the other side of the dot, and a
probability R(ε) = 1 − T (ε) to be reflected (more details in
Appendix B 3). After such a scattering event, the wave packet
of the particle is split in two parts, one on each side of the
dot, propagating in opposite directions. In other words, the
state of this particle is a quantum superposition of two terms,
one in which the particle is in the left lead, and another one
where the particle is in the right lead. So, each such event
contributes by an amount δS = −T (ε) ln T (ε) − R(ε) lnR(ε)
to the entanglement entropy between the two leads. In presence
of a finite steady current, there is finite charge transmitted per
unit of time, and hence a linear growth of the entropy S(t) ∼ αt

[except if R(ε) = 0, as for J ′ = J ]. In such a picture, the
entanglement is directly related to quantum fluctuations of
the transmitted charge, present as soon as T (ε) is different
from 1 and from 0, and this is nothing but a manifestation
of the relation between entanglement and charge fluctuations
in free-particle systems [26–28]. In contrast, if U 
= 0, the
entanglement growth is a priori not directly related to the
partial transfer of the particles. We will indeed see in Sec. III C
that one can be in a situation where I goes to zero while the
rate α stays finite.

The semiclassical description at U = 0 can also be used
to understand qualitatively the triangular shape of the entropy
profile. Indeed, in the limit where the bias V is small compared
to the bandwidth, all the relevant excitations propagate at the
same group velocity (±vF = ±2J ). In that case, the degrees
of freedom which contribute to the entanglement entropy form
a “train” of left-moving wave packets with momenta centered
around −kF , and another train with right-moving wave packets
centered at +kF .1

The important point is that each left-moving particle is
entangled with one right-moving partner, located on the other
side of the dot, at the same distance. When performing a
partition of the chain at a given time t and at a given position R,
the entanglement entropy that is predicted by the semiclassical
description simply depends on the number of entangled pairs
which are separated by the partition. It is then straightforward
to see that this leads to a triangular entropy profile, with a
spatial extension ranging from R = −vF t to +vF t , and a
height equal to αt , with the rate α given in Eq. (B13). Although
this classical picture with noninteracting particles does not
apply to the interacting case, the numerical simulations show

1The average spacing λ between the packets is proportional to the
inverse of their momentum width: λ = 2π (�k)−1. The momentum
width is related to the energy width vF �k = �ε, and this energy
width is nothing but the bias �ε = V . We thus have vF �k = V . The
number of incident particles per unit of time is thus vF /λ = V/(2π ),
and this is consistent with the small-V limit of the current given in
Eq. (B7). Note that the actual distribution is in fact Poissonian.

195117-4



OUT-OF-EQUILIBRIUM DYNAMICS IN A QUANTUM . . . PHYSICAL REVIEW B 96, 195117 (2017)

that the triangular shape of the entropy profiles is a robust
feature, at least far enough from the dot. The integrability of
the IRLM implies that, in some sense, a particle picture is
still applicable, even in presence of strong interactions. This
property was crucial to derive the results in Refs. [7–9], and it
might be related to the triangular profile observed here. Closer
to the dot, the profile is, however, not triangular, and this will
be analyzed in Sec. III D.

It should finally be noted that this linear entropy growth
is what makes this type of simulation difficult since it forces
the matrix dimensions in the MPS representation of the wave
function to grow exponentially with time. Some more details
on this point can be found in Appendix A 2.

III. NONEQUILIBRIUM STEADY STATES

We discuss here the properties of the steady region which
grows in the center of the system, and where local observables
asymptotically become independent of time.

A. Reminder on the scaling regime and
the continuum limit of the IRLM

As mentioned in the Introduction, we focus on the regime
where the free-fermion bandwidth W = 4J is larger than all
the other energies in the problem, namely, J ′, V , and U .2

In this regime, the microscopic details of the leads (like
the band structure) are irrelevant, except for the Fermi
velocity (vF = 2J ), and their gapless low-energy excitations
are described in the continuum limit in terms of simple scale-
invariant Hamiltonians for left- and right-moving relativistic
fermions:

Hc
A = ivF

∫ 0

−∞
dr[ψ†

L(r)∂rψL(r) − ψ
†
R(r)∂rψR(r)], (7)

Hc
B = ivF

∫ ∞

0
dr[ψ†

L(r)∂rψL(r) − ψ
†
R(r)∂rψR(r)]. (8)

Hc
A describes the continuum limit of the left lead (r < 0), Hc

B

describes that of the right lead (r > 0), and ψL and ψR are
the left- and right-moving fermion annihilation operators. The
coupling to the dot then takes the form

Hc
d = −J ′

c(ψL(0) + ψR(0))d† + H.c.

+Uc(: ψL(0)†ψL(0) : + : ψR(0)†ψR(0) :)

× (
d†d − 1

2

)
, (9)

where d is the fermion operator associated to the dot. The
analysis of this model then usually proceeds by “unfolding”
the two semi-infinite leads, giving two infinite right-moving
Fermi wires, but we will not pursue this here.

Since the tunneling to the dot is a relevant interaction, a
Kondo energy scale TB appears when the leads are connected to
the dot, and most quantities are expected to follow some single-
parameter scaling with TB . At energies that are small compared

2In practice we take J = 1 and restrict our numerical simulations
to V � 2, J ′ � 0.3, and U � 2.5. Finite-J ′ corrections start to be
visible for J ′ = 0.5. As for U , our data at U = 4 are clearly outside
the scaling regime.

to the crossover scale TB , the dot is hybridized with the leads,
and the system effectively appears as a single chain (so-called
“healing”), whereas the wires appear to be almost disconnected
at energies much larger than TB . As for the interaction U ,
it corresponds to a marginal operator and therefore changes
continuously the critical properties of the model. Although
this is well established for equilibrium properties, it is less
obvious that TB also rules the out-of-equilibrium properties.
Such behavior is nevertheless verified for the current I , which,
for a given U , takes the form I/TB = f (V/TB) [7]. The role
played by TB in the dynamics of the IRLM has also been
investigated in the absence of any bias (V = 0), in a local
quench setup when the leads are abruptly connected to the dot
at t = 0 [22,23].

In Sec. II F, we show that the stationary rate α = d
dt

S at
which the entanglement entropy in the center grows with
time obeys a similar scaling form. The energy TB is known
to scale as ∼J ′ 1

1−h , where h is the scaling dimension of the
operator which, in the continuum description, describes the
tunneling from the leads to the dot. This dimension h depends

on the interaction through h = 1
4 + ( 1

2 − Uc

2π
)
2
, where Uc is

the interaction strength in the continuum limit [7]. Finding
the precise way Uc depends on the microscopic parameter
U of the lattice model would require to follow exactly the
renormalization group flow going from the lattice model to
the infrared fixed point, but there is no known method to do
this exactly. The analytical result of Ref. [7] was obtained
for the special value Uc = π , where the model has some
self-duality property and can be mapped onto the boundary
sine-Gordon model. Thanks to numerical simulations, it has
been shown that the lattice model at U = 2.0 has a continuum
limit which is close to the self-dual point, where the exponent
h reaches a minimum [7]. Our data also confirm this result. We
also improve quantitatively the connection between interaction
strength U on the lattice, and its value Uc in the infrared limit.

The exponent h also appears in the limit of large (rescaled)
bias V/TB , where the steady current behaves as a power law:
I ∼ V −b with b = 1 − 2h [7]. This behavior will be checked
numerically in detail in the next section (Sec. III B). For a
given U , this offers a simple way to extract h and b from the
simulations, and then to define TB for each value of J ′.

B. Steady current

Figure 5 shows the stationary current as a function of the
bias, for a few values of U and J ′ = 0.08. A log-log scale
is used to visualize the power-law behavior of the current
I ∼ V −b(U ) at sufficiently large V/TB , i.e., small J ′. The
slope of the curve in log-log scale allows to determine the ex-
ponent b(U ) and h(U ) = 1

2 [1 − b(U )]. The results of these
fits are shown in Fig. 6.3 Then, the scale TB is defined

3The value J ′ = 0.08 appears to offer a good compromise to
estimate b in our simulations. Indeed, we need a small J ′ to be
in the scaling regime, but the time to reach the steady regime (which
increases when J ′ decreases) should also not become too large
compared to L/vF .
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FIG. 5. Stationary current I as a function of V for J ′ = 0.08,
for a few selected values of U . A log-log scale is used to show the
power-law behavior of the current at large V/TB (I ∼ V −b), and to
extract the associated exponent b(U ). The values b(U ) extracted by
these fits are displayed in Fig. 6.

as TB(J ′,U ) = (J ′)
1

1−h(U ) = (J ′)
2

1+b(U ) .4 From From the analysis
of the model in the continuum, we know that the exponent b

should reach a maximum value b = 1
2 (equivalent to h = 1

4 )
at the self-dual point. The maximum value we obtain (Fig. 6)
is b = 0.494, which gives an estimate on our precision on this
quantity.

With the above TB one can define a rescaled current I/TB

and rescaled bias V/TB . As shown in Figs. 7 and 8, we then
observe a relatively good collapse, on a single master curve,
of the data sets corresponding to different J ′ (for a given U ).
This indicates that the lattice model is indeed close to the
scaling regime, characterized by a single energy scale TB . For
U = 2.0, this has already been observed by Boulat et al. [7],
but thanks to longer simulations and larger systems, the present

4We adopt the convention where the numerical prefactor in the
definition of TB is set to 1.
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FIG. 6. Exponent b(U ) as a function of the interaction strength
U , obtained by fitting the steady current I to I ∼ V −b, at large V/TB

(see Fig. 5). The full (black) line is b = 2U/π , the result of some
small-U expansion [29,30].
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FIG. 7. Rescaled current I/TB as a function of the rescaled bias
V/TB , for different values of U . The colors label the values of U ,
while the symbol shapes encode J ′ (see the legend of Fig. 8 for
details). For a given U , the results obtained for different values of J ′

approximately collapse onto a single curve, as expected in the scaling
regime. The red line is the theoretical result for the self-dual point [7].
The numerical data for U = 2.0 appear to be in very good agreement
with this theoretical curve. The black line is the exact result for U = 0
[Eq. (B7)]. TB is defined as TB = (J ′)

1
1−h(U ) where the exponent h(U )

is determined from the behavior of I at large V/TB (see text and
Fig. 6).

data have some higher precision and we could extend the I -V
curves to larger values of V/TB (beyond 100) and for several
values of U from −0.1 to 3.

The fact that the current decreases with V at large bias for
U > 0, called negative differential conductance, is a remark-
able phenomenon due to the interaction (for U � 0 the current
is monotonically increasing), and has already been discussed
in [7]. For small values of U , the exponent b describing the
current suppression at large bias has been computed using
some functional renormalization group method [29] or with
some self-consistent conserving approximation [30]. Using
our convention for the lattice model, their result reads as b =
2U/π + O(U 2). As shown in Fig. 6, this is consistent with our
simulations. Our results, however, appear to be slightly below
this first-order expansion in U . Together with the fact that the
maximum of b is found to be slightly below 0.5, this indicates
that our procedure slightly underestimates the exponent. This
effect is presumably due to the fact that the calculations
are performed using a finite J ′ (0.08) and finite voltage V

(up to 	2).

C. Entropy rate

We estimate the steady entropy rate α, defined in Sec. II F,
by fitting the long-time part of the entanglement entropy data
S(t).5 As for the current, we consider the rescaled entropy rate
α/TB as a function of the rescaled bias V/TB . The results,
plotted in Figs. 9 and 10, show that the data obtained for a

5Like for the current I (t), the entropy S(t) often shows some
oscillatory part, ∼cos(V t/2 + cst) (see Fig. 15), and we include such
a term in the fitting function in order to improve the precision on α.
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FIG. 8. Same as Fig. 7 (rescaled current I/TB as a function of the
rescaled bias V/TB ), with a zoom on the low-bias region. The colors
label the values of U , while the symbol shapes encode J ′ (see the
legend).

given value U but for different values of J ′ collapse quite well
onto a single master curve. The values of TB used to construct
the Figs. 9 and 10 are the same as those used to analyze the
scaling of the current. From this point of view, the quality of
the collapse for the entropy rate is quite remarkable since there
is no adjustable parameter: the scale TB was extracted from the
large-bias behavior of current only, and for a single value of
J ′ = 0.08. Note also that, to our knowledge, no exact result is
known for the entropy rate when U 
= 0, even at the self-dual
point.
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FIG. 9. Rescaled entropy rate, α/TB , as a function of V/TB , for
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symbol shapes encode J ′ (see the legend of Fig. 8 for details). The
black line is the exact free-fermion result [Eq. (B16)].
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FIG. 10. Same as Fig. 9, with a zoom on the low-bias region. Top
panel: U = −0.1, 0, and 3. Bottom panel: U = 0.2, 1, and 2. The
colors encode the values of U , while the symbol shapes label the
values of J ′, as indicated in the legend of Fig. 8. The black line (top
panel) is the exact free-fermion result in the limit J ′ → 0 [Eq. (B16)].

The free-fermion result for the entropy rate (derived in
Appendix B 3) converges to some finite constant α/TB → 2 at
large rescaled bias. An important fact we learn from Fig. 9 is
that, in presence of interactions, α/TB also saturates to some
finite value at large V/TB . This limiting value appears to be
smaller than 2 when U > 0. From our data, the large-bias
behavior of the entropy rate when U < 0 is not simple to
guess. It may diverge as V/TB → ∞, or it may saturate to
some value larger than 2.

For U > 0, while the current decreases to zero at large
voltage (positive exponent b), the entropy rate stays finite. This
observation is somehow counterintuitive since a vanishingly
small amount of charge is transferred per unit of time from one
wire to the other, while their entanglement entropy still grows
at a finite rate. In this large-bias regime it is possible that the
entanglement is generated by the density-density interaction
U , without any actual transfer of particles from one lead
to the other. This question certainly deserves some further
investigations.

D. Stationary entropy profile

Several works have shown that, in Kondo-type problems,
the entanglement entropy can be used to identify some spatial
region of size ξ ∼ T −1

B around the impurity (sometimes called
Kondo “cloud”). See, for instance, Refs. [23,31] concerning
the IRLM, and Ref. [18] for a more general review. While
these studies investigated the entanglement in the ground state
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FIG. 11. Top: entanglement entropy profiles for U = 0, plotted as
a function of the rescaled distance r/ξ , with ξ = T −1

B and TB = J ′2.
Some constant value has been subtracted from each profile, to allow
the data to (approximately) fall onto a single time-independent
curve. We only show here the right part of the profile (r > 0),
the other side (r < 0) being symmetric. Bottom: same data plotted
as a function of the bare distance r . System size is N = 6000
and time is t = 1200, values for V (J ′): V (0.25) = 0.5, V (0.1) =
0.08, V (0.075) = 0.045, V (0.05) = 0.02 with ratio T −1

B (0.05) :
T −1

B (0.075) : T −1
B (0.1) : T −1

B (0.25) = 25 : 4 : 2.25 : 1. In all cases,
the rescaled bias is V/TB = 8.0.

of the model, here we instead look at the entropy profile in some
nonequilibrium steady state, in presence of a finite current.

Our results are summarized in Figs. 11 and 12. As discussed
in Sec. II F, the global shape of the profile is approximately
triangular, with some maximum value that grows as αt with a
rate α ∼ O(TB). In order to analyze more precisely the long
time limit of the profiles, we subtract the value of the maximum
of each profile.

When plotted as a function of the rescaled distance r/ξ ,
with ξ = T −1

B , the data for U = 0 corresponding to different

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

S
-S

0

r * TB

J’=0.02
J’=0.04
J’=0.07
J’=0.12

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0  20  40  60  80  100  120

S
-S

0

r

J’=0.02
J’=0.04
J’=0.07
J’=0.12

FIG. 12. Same as Fig. 11, but for U = 2.0. System
size is N = 402 and t = 60. Values for V (J ′): V (0.12) =
1.0, V (0.07) = 0.5, V (0.04) = 0.25, V (0.02) = 0.1 with ratio
T −1

B (0.02) : T −1
B (0.04) : T −1

B (0.07) : T −1
B (1.2) = 10 : 4 : 2 : 1. In all

cases, the rescaled bias is V/TB = 17.1.

values of J ′ (but same V/TB ) collapse onto a single curve, at
least approximately. At distances from the dot which are large
compared to ξ , the curve is linear. In this region, the collapse is
a consequence of the fact that the entropy rate α, and thus the
slope of the profile, scales as TB . However, the curve shows a
nontrivial structure for distances from the dot that are of the
order of ξ , with some rounded maximum. We interpret this as
some signature of the more complex correlations taking place
in a nonequilibrium Kondo cloud of size T −1

B .
The situation at U = 2, displayed in Fig. 12, is more

intriguing. The use of the rescaled distance r · TB still allows
the data associated to different J ′ (and thus different TB) to
collapse on a straight line for distances that are sufficiently
large. But, since the entanglement entropy is just a linear
function of the distance to the dot when r is sufficiently large,
this collapse only reflects the fact that the slope of the entropy
profile is proportional to TB (which we know already since the
entropy rate scales as TB and the Fermi velocity is equal to
2). Closer to the dot, there is, however, no clear convergence
for r · TB � 0.4. More precisely, the distance rmax at which
the entropy profiles reach a maximum clearly grows when J ′
goes to zero, but at some rate which is slower than T −1

B . So,
from the present data at U = 2 (and V/TB = 17.1), there is
no clear evidence of some Kondo-type spatial structure of size
∼T −1

B in the stationary entropy profiles, as observed in the free
case. It could, however, be that some longer times are required
to achieve some profile collapse in this regime. Some further
systematic investigations, as a function of U and V and J ′,
would be required to elucidate this point.

IV. CONCLUSIONS

We have analyzed a number of numerical results concerning
the steady-state properties of the IRLM in the scaling regime:
I -V curves, exponent b(U ) and the Kondo scale TB , and
entropy rate α. We could in particular obtain accurately the
rescaled I -V curves and the entropy rate α in some large
range of the rescaled bias (up to V/TB = 100), and for several
values of the interaction strength U .

We hope that this study will trigger some further investi-
gations using analytical techniques since our results might be
compared quantitatively to field-theory results obtained thanks
to the integrability of the model in the continuum limit, along
the lines of what has already been done at the self-dual point
[7], or for the boundary sine-Gordon model [8,9]. It would also
be very interesting to elucidate qualitatively the mechanisms
at work in the limit of large bias and U > 0, to understand
how a finite entropy rate can coexist with a vanishingly
small current. Finally, our data can be used to benchmark
new approximations for quantum impurity models, or when
developing numerical schemes which can deal with long time
evolutions in interacting problems with linear entanglement
entropy growth.
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APPENDIX A: DETAILS ABOUT THE NUMERICAL
SIMULATIONS

1. Initial state and unitary evolution

The initial state is computed using a conventional DMRG
procedure, and the sweeps are stopped when the energy
variation becomes smaller than �E = 10−10. During this
initial-state calculation the level of MPS truncation is the
same as during the time evolution, and is determined by
some maximum value δ for the discarded weight, typically set
to 10−7.

Most of the data are calculated for chains of length between
N = 120 and 200. Unless mentioned otherwise, the time
evolution is performed with time steps τ = 0.2 and we used
the MPO-based approximation to exp(−iHτ ) that is noted
W II in Ref. [20]. As explained in this previous work, one can
combine several W II to get a smaller error:

W II(τ1)W II(τ2) . . . W II(τn) = exp(Hτ ) + O(τp). (A1)

The simplest case is to use n = 2 steps to reduce the error
to O(τ 3), and one solution is

τ1 = 1 + i

2
τ, τ2 = 1 − i

2
τ. (A2)

We have computed two other solutions, corresponding to p =
4 and 5. These were mentioned in Ref. [20], but not given
explicitly. The first one requires n = 4 and is given by

τ1 = 1

4

(
−1 + i√

3
+ 1 − i

)
τ,

τ2 = iτ1,
(A3)

τ3 = −iτ̄1,

τ4 = τ̄1.

The next one, with an error scaling as O(τp=5), requires n = 7
steps. It was obtained numerically using Mathematica:

τ1/τ = 0.2588533986109182 + 0.0447561340111419i,

τ2/τ = −0.0315468581488038 + 0.2491190542755632i,

τ3/τ = 0.1908290521106672 − 0.2318537492321061i,

τ4/τ = 0.1637288148544367,

τ5 = τ̄3,

τ6 = τ̄2,

τ7 = τ̄1. (A4)

It should be noted that these solutions are not unique, but we
have selected the ones where the error terms, of the order
O(τp), have the smallest prefactors. We have checked the
precision of these three different Trotter schemes on a small
free-fermion system with six spins, and compared the results
for the current at time t = 100 against the exact free-fermion
solution. The results are shown in Fig. 13. As expected, the
total error scales as τp−1, due to the fact that the total number
of steps is t/τ and each step contributes an amount of order
O(τp) to the error.
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FIG. 13. Absolute value of the error for the expectation value of
the current flowing through the dot, for N = 6, U = 0, V = 1.0, t =
100, J = 0.5, J ′ = 0.5. The error is computed by comparing the
MPS simulations with an exact free-fermion calculation. For small τ

the main source of error is no longer the finite τ , but the successive
truncations in the Schmidt decompositions (SVD). This can be seen
by comparing the data with cutoff parameter δ = 10−10 to those
without any truncation (δ = 0). When the error becomes extremely
small, of the order of 10−10, it stops decreasing with τ . This is due to
the finite floating point precision of the machine.

2. Matrix truncations

During the initial DMRG sweeps (initial-state calculation)
and during the time evolution, the bond dimensions in the MPS
are controlled using a cutoff equal to δ on the discarded weight
(the sum of the discarded Schmidt values should be equal to
or smaller than δ). The effect of the truncation parameter δ

is illustrated in Figs. 14 and 15. In this case, a value δ =
10−6 would provide a sufficient precision on the current (lower
panel), but it should be noted that obtaining a precise value for
the entropy rate (upper panel of Fig. 14) requires working with
a smaller δ. For smaller J ′, as shown in Fig. 15, one has to use
δ = 10−8 in order to get some accurate estimate of the entropy
rate. In that case, the bond dimension can exceed 1000 at time
	40.

APPENDIX B: STEADY STATE IN THE
FREE-FERMION CASE

1. Steady current

In the free-fermion case (U = 0), the transmission and
reflexion coefficients T (k) and R(k) for an incident fermion
with momentum k have been computed by Branschadel
et al. [32]:

T (ε) = 1 − [ε/(2J )]2

1 + ε2(J 2 − 2J ′2)/(4J ′4)
, (B1)

R(ε) = 1 − T (ε), (B2)

ε(k) = −2J cos(k). (B3)

Combined with a Landauer approach [33–35] this gives the
steady current

I =
∫ k+

F

k−
F

dk

2π
T (ε(k))v(k), (B4)
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FIG. 14. Top panel: entanglement entropy of the left lead as a
function of time for different values of the SVD truncation parameter
δ which defines the maximum discarded weight at each time step.
Middle: maximum MPS bond dimension. Bottom: current flowing
through the dot. Parameters of the model: N = 200, U = 2, J ′ = 0.2,
and V = 1. The (red) horizontal dotted line indicates the exact value
of the steady current at the self-dual point [7]. For these parameters,
the upper panel shows that a truncation value as low as δ = 10−7 is
required to obtain some accurate value for the entanglement entropy,
leading to large bond dimensions (above 1000). In contrast, δ = 10−6

appears to be enough to estimate the current correctly. Simulations
performed with Trotter step τ = 0.2.

where the Fermi momenta in both leads are related to the
voltage bias through ε(k±

F ) = ±V/2 and the group velocity
v(k) is, by definition, v(k) = ∂ε(k)

∂k
. Changing the integration

variable from k to ε gives the standard result

I =
∫ V/2

−V/2

dε

2π
T (ε). (B5)

For the IRLM, using Eq. (B1), the integral gives

2πI = −V
J ′4

a
+ 4J ′2 (1 − J ′2)2

a
3
2

arctan

( √
a

4J ′2 V

)
,

a = 1 − 2J ′2, (B6)

where we assumed J = 1, V < 4, and J ′2 < 1. This function
is plotted in Fig. 16 for three different values of J ′. In
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FIG. 15. Same as Fig. 14, for J ′ = 0.05. For these parameters,
a truncation value as low as δ = 10−8 is required to obtain some
accurate value for the entanglement entropy, up to t = 60. One
observes some small amplitude oscillations in S(t), with the same
period Tosc = 4π/V , as for I (t).

the (scaling) limit where J ′ � 1 we define TB = (J ′)2 and
Eq. (B7) simplifies to

2πI

TB

= 4 arctan

(
V

4TB

)
, (B7)

in agreement with Ref. [7]. Note that the expression I (t) of the
current at finite time and U = 0 can be found in the Appendix
of Ref. [30]. It shows damped oscillations at frequency Tosc =
4π/V , a relaxation time O(J ′2), and converges to Eq. (B7)
when t → ∞.

2. Density drop across the dot

We make the approximation that the fermions are pointlike
particles which propagate ballistically in leads, at some
group velocity v(k). This is a semiclassical approximation
(called hydrodynamical approximation in Ref. [36]) where
each particle has a well-defined position and momentum. In
this approximation, each lead becomes homogeneous in the
steady regime and the system is described by some occupation
numbers n(k)R/L in both leads. Taking into account the initial

195117-10



OUT-OF-EQUILIBRIUM DYNAMICS IN A QUANTUM . . . PHYSICAL REVIEW B 96, 195117 (2017)

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30  35  40  45  50

2 
π 

I/
T

B

V/TB

DMRG data J’=0.5 U=0 TB=(J’)2

DMRG data J’=0.35 U=0 TB=(J’)2

DMRG data J’=0.2 U=0 TB=(J’)2

Exact free fermions result with J’=0.5 (Eq. B6)

Exact free fermions result with J’=0.35 (Eq. B6)

Exact free fermions result with J’=0.2 (Eq. B6)

4 arctan(V/(4TB)) (Eq. B7)

FIG. 16. Rescaled steady current as a function of the rescaled
voltage in the free case (U = 0), using TB = J ′2. The symbols
represent the DMRG data for three different values of J ′, and the
full lines are, respectively, the exact result [Eq. (B7)] for J ′ = 0.5
(green), for J ′ = 0.35 (blue), for J ′ = 0.2 (orange), and the limit
when J ′ is small [Eq. (B7), black]. The DMRG data are in perfect
agreement with the exact results, but since chosen J ′ are not very
small one observes some deviations from Eq. (B7).

momentum distributions and the scattering on the dot, we
obtain

n(k)L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if k+
F < k

1, if − k−
F < k < k+

F

R(k), if − k+
F < k < −k−

F

0, if k < −k+
F

(B8)

n(k)R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if k+
F < k

T (k), if k−
F < k < k+

F

1, if − k−
F < k < k−

F

0, if k < −k−
F .

(B9)

The total density in each lead is then obtained by integrating
the distributions above. Using the fact that k+

F + k−
F = π and

R(k) + T (k) = 1 we find

ρL = 1

2
+

∫ k+
F

k−
F

dk

2π
R(ε(k)), (B10)

ρR = 1

2
−

∫ k+
F

k−
F

dk

2π
R(ε(k)). (B11)

These densities describe the parts of the leads that are
sufficiently far from the dot (|r| � 1), and at times that
are sufficiently long (t � r), so that the growing quasis-
teadyregion has reached r (and −r). On a finite system we

should additionally require 2J t � N/2 (2J being the fastest
group velocity).

We thus expect some density drop

ρL − ρR = 2
∫ k+

F

k−
F

dk

2π
R(ε(k)) (B12)

across the dot.

3. Entropy rate

In analogy with the Landauer approach for the current, the
stationary entropy rate α can be obtained analytically. Since
each incident particle at energy ε contributes to the entropy
by an amount δS = −T (ε) ln T (ε) − R(ε) lnR(ε) (its wave
packet is split into a reflected part and a transmitted part),
we get

α = − 1

2π

∫ V/2

−V/2
dε[T (ε) ln T (ε) + R(ε) lnR(ε)]. (B13)

The result above has been checked numerically against
numerical solution of dynamics for the free-fermion problem.

In the scaling regime J ′ is small, the energy ε are small
(because the bias V is small), but the ratio ε/J ′2 is of order one.
In this limit, the transmission coefficient [Eq. (B1)] becomes

T (x) = 1

1 + x2
, (B14)

where x = ε/(2TB) and TB = J ′2. With a change of variable,
the entropy rate [Eq. (B13)] can be expressed as

α(v) = 2TB

2π

∫ v/4

−v/4
dx

[
1

1 + x2
ln(1 + x2)

+ x2

1 + x2
ln

(
1 + x2

x2

)]
, (B15)

where v = V/TB . The integral can be computed explicitly and
the final result is

α(v)

TB

= 2

π

[
2[1 + ln(v/4)] arctan(v/4) + 1

4
v ln(v2 + 16)

− 1

2
v ln(v) − iLi2

(
− iv

4

)
+ iLi2

(
iv

4

)]
, (B16)

where Li2 is the the polylogarithm of index 2. This quantity
tends to a constant at large bias:

α(v → ∞)/TB = 2. (B17)

At low bias we have

π

TB

α(v → 0) =
(

5

288
− 1

48
ln(v/4)

)
v3 + O(v5). (B18)
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